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Abstract. Causal estimation is possible through the use of Bayesian 

Networks; an alternative is to use an intervention operator originally 

proposed by Pearl. This operator acts by manipulating a variable that is a 

candidate cause of another, eliminating from this potential cause any 

influence from other variables. This tool promises to be a powerful method 

for estimating causality; however, as far as we know, it does not have a 

validation that allows us to know its scope and limitations. This work 

presents the implementation of the intervention operator and its evaluation in 

different databases. This last one tries to measure the performance of the 

efficiency to determine causal routes using for it the estimation of the Causal 

Effects and the Bayes Factor. Our results allow us to identify operator 

improvements to be used in a general causal estimation scheme and not only 

in Bayesian Networks that meet certain characteristics. 
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1 Introduction  

The study of causality has its origins approximately 300 years ago with the works 

of Hume and Kant, who tried to explain how it is that causal knowledge is acquired 

naturally. This gave rise to various investigations that throughout history have tried 

to understand and replicate causality. Artificial Intelligence (AI) is an area 

interested, among other things, in the study of mental processes including causal 

learning. Intuitively, a causal relationship occurs when X causes Y. However, we 

cannot always identify such relationships, as they may be spurious or contain 

confounding factors that may be imperceptible to observations. Pearl argues that the 

best way to reproduce the causal inference is through the computer by first 

understanding the logic of causal thinking [1]. 

Pearl represents the natural causal process through a graphical representation 

called "the ladder of causation", that explains how the natural causal process is 

carried out and how it could be mapped artificially [1]. Below are described the 

ladder of causation levels: 
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 Level 1. Represents the identification of causal relationships (seen 

or observed). 

 Level 2. Refers to the interventions and predictions of the effects of the 

deliberate intervention of the environment. 

 Level 3. Is the ability to choose from the alterations that produce the 

best results. 

The works of Judea Pearl propose an intervention operator for the study of causal 

relationships located on the second level. He introduced an intervention of variables 

to a Bayesian Network through an operator called “do or set”, with which a new 

probability resulting from the intervention of variables, is obtained [2]. 

There are currently no reports of work in which the functioning of the operator 

can be appreciated in real cases; in this evaluation proposal we try to find the ideal 

conditions under which the operator works, we evaluate how through the 

intervention it is possible to access a set of new probabilities that allow to express 

themselves in causal terms. In this work, we made use of a set of databases provided 

by experts in different areas; one inclusion criterion for these was the existence of 

causal relationships between some of their variables. 

The results found as interventions were encouraging in terms of obtaining causal 

probabilities; however, they raised the imminent need to create a model that learns 

causal relationships, supporting the expert in creating Causal Bayesian 

Networks automatically. 

2  Theoretical Framework 

2.1  Causal Bayesian Networks 

Bayesian Networks (BN) were developed and introduced by Judea Pearl in the early 

1980s to facilitate the prediction and abduction of intelligent AI systems [7]. BN's 

are models that combine graph theory and Bayesian probability. They are 

represented by Directed Acyclic Graphs (DAG) that allow us to know the structure 

of the variables hierarchically, identifying parents and children in their structure and 

the existing relationship between them. The structure of a network provides 

information on the probabilistic dependence of variables or the conditional 

independence of one variable given to another (or set of them) [8]. The force of 

influence between the connections of a network is contained in the conditional 

probabilities and is represented by each node given the set of its parents. The joint 

probability of a BN can be obtained using equation 1: 

𝑃(𝑥1,  … , 𝑥𝑛) =  ∏ 𝑃(𝑥𝑗|𝑝𝑎𝑗)

𝑗

, (1) 

where 𝑝𝑎𝑗 represents the parents of node 𝑥𝑗 in the BN.  

As of the structure of a BN, it is possible to carry out association consultations 

(Bayesian inference), which are supported by the criterion of d-separation to verify 
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the conditional independence in the connections. This paper will not address details 

about BNs, such as the d-separation criterion and Markovian parents. If you are 

interested in consulting these issues, a more detailed review is given in [3]. 

A Causal Bayesian Network (CBN) can be understood as a BN, with the property 

that the parents of each node represent a direct cause of it. From equation (1), we 

can assume that the parents of the variable 𝑋𝑗, are its direct causes. Otherwise, if 

there are no parents, the marginal probability 𝑃(𝑋𝑗) must be used. 

Definition 1. Causal Bayesian Network [3] 

Let 𝑃(𝑣) be a probability distribution on a set 𝑉 of variables, and let 𝑃𝑥(𝑣) denote 

the distribution resulting from the intervention 𝑑𝑜(𝑋 =  𝑥) that sets a subset 𝑋 of 

variables to constants 𝑥. Denote by 𝑃∗ the set of all interventional distributions 

𝑃𝑥(𝑣), 𝑋 ⊆ 𝑉, including 𝑃(𝑣), which represents no intervention (i.e., 𝑋 =  0). A 

DAG G is said to be a causal Bayesian network compatible with 𝑃∗ if and only if the 

following three conditions hold for every 𝑃𝑥  ∈  𝑃∗: 

1. The probability distribution 𝑃𝑥 is Markov relative with the DAG G [6]. 

2. The probability of all the variables that are part of an intervention is equal 

to 1 for the value established in: 𝑃𝑥(𝑣𝑖)  =  1 for all 𝑉𝑖 ∈ 𝑋 provided that 

𝑉𝑖 = 𝑣𝑖 is consistent with 𝑋 = 𝑥 [6]. 

3. The probability of all the remaining variables that are not established in 

the intervention is equal to the original probability (the variable given by 

their parents). 𝑃𝑥(𝑣𝑖|𝑝𝑎𝑖)  =  𝑃 (𝑣𝑖│𝑝𝑎𝑖) for all 𝑉𝑖 ∉  𝑋 provided that 𝑝𝑎𝑖  

is consistent with 𝑋 =  𝑥 [6]. 

From Definition 1, the truncated factorization 𝑃𝑥(𝑣) can be calculated for any 

intervention 𝑑𝑜(𝑋 =  𝑥). Formally remaining as the equation (2): 

𝑃𝑥(𝑣) = ∏
 

{ 𝑖|𝑉𝑖 ∉ 𝑋}   𝑃(𝑣𝑖|𝑝𝑎𝑖), (2) 

for everything 𝑣 consistent with 𝑥. 

According to Pearl, the construction of causal DAG has several advantages. First, 

the judgments required for the construction of the models are more significant and 

accessible. In addition, the causal models indicate how these probabilities would 

change when performing external interventions [3]. The formal construction of 

these models is based on the assumption that parent-child relationships represent 

autonomous mechanisms, so it is possible to make changes in those relationships 

without changing or affecting the other existing relationships within the network.  

The 𝑑𝑜(𝑥) operator simulates physical interventions in the network, eliminating 

some functions of the model and replacing it with constants 𝑋 =  𝑥 while keeping 

the rest of the model unchanged. Due to the assumption of autonomy, the 

manipulated distribution of the intervened variable is independent of the rest of the 

network, so a pruning process can be applied, which implies the elimination of all 

the arcs (parents) received by the intervening variable [4]. 
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The difference between observing and intervening is deduced from the last 

statement. For example, if we wanted to observe the effect of 𝐵 =  𝑏0  for a model 

of BN 𝑃 (𝑎, 𝑏, 𝑐)  =  𝑃 (𝑎) 𝑃 (𝑏 | 𝑎) 𝑃 (𝑐 | 𝑏), the probability would be obtained 

from of 𝑃 (𝐴, 𝐶 | 𝐵 =  𝑏0). However, by applying the assumptions of autonomy 

and pruning, the connection between variables B and C are eliminated, obtaining: 

𝑃(𝑎, 𝑑𝑜(𝑏), 𝑐) =  𝑃(𝑎)𝑃(𝑐|𝑑𝑜(𝑏) = 𝑏0). (3) 

From the new probability expression, it is possible to calculate the influence of 

the intervened variables on their effects. The inference rules necessary for the 

calculation of causal probability expressions may be consulted in detail in [6]. 

Whenever a feasible reduction is detected for 𝑃(𝑦|�̂�)the effect of 𝑋 on 𝑌 is said 

to be identifiable. 

Definition 2.8 Identificability [2] 

The causal effect of X on Y is said  to be identifiable is the quantity 𝑃(𝑦|�̂�) can be 

computed uniquely from the joint distribution of the observed variables. 

Identifiability means that 𝑃(𝑦|�̂�) can be estimated consistently from an arbitrarily 

large sample randomly draw from the joint distribution.  

Then, the causal effect of a variable 𝑋 on another variable 𝑌 is: 

Definition 2.9 Causal Effects [3] 

Given two disjoint sets of variables, X and Y, the causal effect of X on Y, denoted 

either as 𝑃(𝑦|�̂�) or as 𝑃(𝑦|𝑑𝑜(𝑥)), is a function from X to the space of probability 

distributions on Y. For each realization x of X, 𝑃(𝑦|�̂�) gives the probability of Y = 

y induced by deleting from the model of (3) all equations corresponding to variables 

in X and substituting X = x in the remaining equations. 

Finally, the calculation of the causal effect (or average causal effect) that one 

variable has on another, can be calculated from equation (4): 

𝐸𝐶 =  𝑃(𝑌 =  𝑦|𝑑𝑜(�̂�)) −  𝑃(𝑌 =  𝑦|𝑑𝑜(�̂�′)),  (4) 

where: 

𝑌 =  𝑦 is a specific value of the effect.  

�̂� is a specific value of the intervened variable.  

�̂�’ is another value of the intervened variable for the same value of 𝑦. 

This last equation is the one that allows extracting the real estimation of the 

intervention of variables in the network, marking the difference with the simple 

observation. 
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3 Materials and Methods 

3.1 Materials 

The selection of the experimental units was made up of a set of "causal" databases. 

According to the expert opinions, these contained causal relationships in some of 

the variables. 

We used a total of 5 datasets. The first called Ecological Integrity is a database 

of 23 variables (22 quantitative and one qualitative) with 290,687 cases; 4 variables 

as possible causes and 4 effects. This dataset contains information on ecological 

integrity in Mexico. Two other sets contain data related to Breast Cancer. One is a 

prospective sample and the other a retrospective sample, 3 variables were 

considered as possible causes and one as an effect of each of them. These databases 

contain 12 variables (11 quantitative and one qualitative) with 322 and 692 

cases respectively. 

Another dataset contained information on Gene Expression Levels, with a total 

of 12 quantitative variables (3 causes and one effect) and 31 cases. Finally, the 

Synthetic-data-BayesiaLab database was obtained from the BayesiaLab software to 

validate the results of this implementation. The database has 3 variables (one cause 

and one effect) and a total of 1000 cases. Causes and effects were determined by 

the experts who provided the data. Each variable was an experimental unit and the 

total was 34, in each run one value the variable intervened was fixed. 

3.2 Methods 

The pre-processing strategy started discretizing the quantitative variables in the 

datasets; for this we used Weka software, and the used methods were: Discretize 

and CAIM. The implementation was carried out in R, the algorithms and metrics 

used to BN’s construction were Hill-Climbing with the BIC, and K2 metrics using 

the maximum likelihood estimator; the programing language used to implement the 

causal routes search and the new probabilities estimation is R.  

To carry out the validation of the results, the causal effects were obtained by 

equation 4, and additionally, calculated the Bayes factor was used. The Bayes Factor 

(BF) is the relationship between the probability of one hypothesis and another. It 

can be interpreted as a measure of force in favor of a hypothesis (model) of two 

competing hypotheses and is denoted by equation 5 [5]: 

𝐵𝐹 =
𝑃(𝐷|𝐻1)

𝑃(𝐷|𝐻0)
. (5) 

The BF can take any positive value, and a way of interpreting it is given by what 

is indicated in Table 1. 
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4  Methodology 

A single treatment was designed for the experiment and applied to all experimental 

units. The treatment has only one level and consists of the intervention of a variable 

in the network, fixing for each run a specific value (do(x)) of the variable 

intervened. 

Each experimental run was carried out in three stages. The first consisted of the 

construction of the BR; the second the search for the possible causal route and the 

third, the estimation of the causal probability. 

Phase 1. (Construction and validation of BN’s) 

A BN is built from the data set using the bnlearn R library.  

Once the BN has been obtained, and before the intervention, the causal 

relationships are validated by the expert. 

If the relationships in the network do not reflect a causal match with the expert's 

knowledge, the parameters with which the BN is constructed can adjust - such as 

the metric - or indicate the permitted or restricted causal relationships that must be 

respected in this one. 

Phase 2. (Search for Causal Routes) 

From the BN’s validated in Phase 2, the cause variable and the value to be 

intervened must be indicated, as well as the effect variable. 

With the support of the causal.effect library, the search for the Causal Route (CR) 

in the BN is carried out. 

If there is a CR, the system delivers the new probability equation, which shows 

the causal probabilities must be calculated. An example of the form of the equation 

is presented below: 

“𝑠𝑢𝑚
{𝑥𝑖,𝑥𝑗}𝑃(𝑦|𝑥𝑘 , 𝑥𝑖 , 𝑥𝑗)𝑃(𝑥𝑗 |𝑥𝑘)𝑃(𝑥𝑖 |𝑥𝑘)

”, (6) 

Table 1. Interpretation of BF. 

Bayes Factor Interpretation 

>100 Extreme evidence for H1 

30-100 Very strong evidence for H1 

10-30 Strong evidence for H1 

3-10 Moderate evidence for H1 

1-3 Anecdotal evidence for H1 

1 No evidence 

1-0.33 Anecdotal evidence for H0 

0.33 – 0.1 Moderate evidence H0 

0.1 – 0.03 Strong evidence for H0 

0.03 – 0.01 Very strong evidence for H0 

<0.01 Extreme evidence for H0 
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where 𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘  denote CBN variables, which are not the effects. The effect is 

represented by the variable 𝑦. 

Phase 3. (Calculation of causal probabilities) 

To calculate the causal probability tables, the expression is broken down of 

equation 3, separating the conditional probabilities and the sum about which the 

calculation will run. 

Calculate - from the data - the conditional probability tables for each element of 

the causal expression (equation 3). Carry out the normalization of each table, 

calculate the causal probabilities. 

Once the probability tables are obtained, calculate the Causal Effects and Bayes 

Factor to find potential causes. 

Finally, the probability values are compared before and after the intervention, the 

library "querygrain" make queries in the BN using probability propagation. 

5        Results 

Once the BN’s were obtained, the search for possible causal routes was carried out. 

Figure 1 shows the BN (left) and CBN (right) for the Ecological Integrity base; the 

pink nodes shown in the CBN represent the set of variables that are part of the 

Causal Route, and that were used to obtain the causal probabilities. The variable 

used for this example was Landscape Transformation (landtrnas), and the variable 

on which its effect was calculated was Ecological Integrity (eiclas). 

The new expression of probability resulting from the intervention, obtained 

through the inference rules, is presented below: 

“sum{divfun, resistenci}P(eiclas|cropland, rangeland, irrigation, land-

trans, divfun, resistenci)P(resistenci|cropland, rangeland, irrigation, 

landtrans, divfun)P(divfun|cropland, rangeland, irrigation, landtrans)”  

  (7) 

The causal probabilities were calculated from equation 6. This exercise allows 

us to appreciate the differences between intervention and observation. Table 2 

shows the results of the intervention to a cause variable (do(landtrans = (0,2 − 0,4))) 

and the observation, this last one calculated through the propagation of probabilities 

in the BN.  

From the results of Table 2, it may be thought, that the intervened variable, is a 

potential cause of the effect. However, this cannot be proven until calculating the 

Causal Effects (CE) and the Bayes Factor (BF). 

All datasets were analyzed in the same way, from the generation of BN's to the 

obtaining of the CE and BF. Table 3 shows the results of the search of these routes, 

illustrating the low percentage of possible variables to intervene, from networks 

created with traditional AI algorithms. 
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It is important to mention that in the first experimental version (the one presented 

in this document), BN was not considered to be carried out manually, that is, only 

with the knowledge of the experts. In a second attempt, the networks were modified, 

which considerably increased the number of intervened variables, and causal 

routes found. 

From the new expressions of probability, resulting from the intervention of 

variables in the BN's, it is possible to estimate the new probabilities that we call 

causal. This was shown in the previous example (Table 2). Subsequently, the BF 

and the CE were calculated. To obtain them, it was necessary to calculate the causal 

probability for two different values of the cause and the same value of the effect. 

Table 4 presents the results of some of these values. The column called effect 

shows the name of the variables for this purpose and the value for which their causal 

  

Fig. 1. Bayesian Networks (left) Causal Bayesian Network (right). 

Table 2. Observed and causal probabilities for the cause variable landtrans = (0.2 - 0.4) and 

the eiclass effect. 

Effect = eiclas   Probability BN Probability CBN 

High 0.04 0.02 

Low 0.10 0.06 

Medium 0.07 0.03 

Transformed 0.79 0.89 

Table 3. Proven databases for intervention and causal routes found in each. 

Datasets Effects Cause 
Total 

experiments 
CR - found 

Ecological integrity 4 6 24 4 

Breast cancer - prospective 1 3 3 1 

Breast cancer - retrospective 1 3 3 1 

Genetic expression levels 1 3 3 1 

Synthetic data BayesiaLab 1 1 1 1 
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probability was calculated. The column called interventions shows two values of 

the cause in which the causal probabilities were compared; columns BF and CE 

show the results of the calculation of these tests. 

The BF can be used as a hypothesis test to contrast two models, making a 

comparison of this test with the CEs allowed testing the operator's consistencies in 

estimating causal probabilities and their interpretation of these as potential causes. 

According to the interpretation corresponding to the BF this is consistent with the 

CE, the values between 1 and 100 obtained with the BF must correspond to positive 

values of the CE, and that supports the evidence of potential causes for the inter-

vened values found in the numerator of the BF or to the left of the CE. 

6        Conclusions and Future Work 

The variables intervention through the operator proved to be a good method of 

causal estimation if the conditions for the intervention are favorable. The tests 

carried out after the implementation meant that its effectiveness on estimating the 

causal probability could be confirmed. 

This work not only explores the complex issue of causality but also provides an 

understanding of how to observe relationships, makes estimates based on 

observations and interprets them; it should not be a difficult task. However, finding 

the set of appropriate variables that could be probable causes, and carrying out 

interventions that provide information on the causal force of one value over another, 

does have a higher degree of difficulty. This is because estimating causality 

adequately requires much expert knowledge, and intuition, which cannot be 

reflected in the calculation of the causal probabilities. 

Table 4. Bayes Factor and Causal Effects results for intervention. 

Datasets Effect Cause Interventions BF CE 

Ecological integrity 
Eiclas 

high 
landtrans 

(-inf-0.2] 

(0.2-0.4] 

 

25.00 0.47 

Breast cancer -

prospective 

Outcome 

Malignant 
Size 

Present 

Absent 

 

0.33 
-

0.37 

Breast cancer -

retrospective 

Outcome 

Malignant 
Nuclear.Size 

Present 

Absent 

 

7.91 0.72 

Genetic expression 

levels 

APOE 

(319.22 - 

387.64) 

BACE1 

(166.94 - 

221.33) 

(221.33 - 

493.43) 

 

3.4 0.40 

Synthetic data 

BayesiaLab 

Outcome 

Patient 

Recovered 

Treatment 
Yes 

No 
1.12 0.08 
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Once it has been proven that it is possible to estimate the probability of the 

intervention, it becomes interesting to find a way to connect the first level of the 

ladder of causation with the second. To do this, it will be necessary to turn towards 

the areas that study the process in which the learning of the causal relations occurs 

naturally and look at these algorithms that allow the creation of a CBN that 

resembles causal learning, with the same precision that is achieved naturally. This 

will provide artificial entities with mechanisms that learn approximate causality to 

the same level of a human being. 
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